
AD-A144 126 COMPREHENSIVE OCCUPATIONAL DATA ANALYSIS PROGRAMS N0 1/1
(COD'APRO) SYSTEMS MANUAL(U) NAVY OCCUPAYIONAL

YEYELOPMENY AND ANALYSIS CENYER WASHINGYON DC JAN 64

UNCLASSIFIED DOD/DF-84/YYNR FIG 9/2 NIL

11111 I 2 .2
L

11101.25 L .2.1 =0~ 111 .

lIlia, - o-

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-I1963-A

CODAP80
cm RELEASE 83.1

SYSTEMS MANUAL
I

EXECUTIVE AGENT
FOR

JOINT TASK
ANALYSIS SUPPORT

pmEL.:CTE

DECEMBER 1983 AUG 1 81940

Th ~ ~isllt hcis been ppyovd

for publiF release cmt d.

NATIONAL TECHNICAL f' -8 I 015
INFORMATION SERVICE.... M ,J ,I

7, -k

502"- lo

REPORT OCUMENTATION - NO. 3 L Iraclh Amoan No
PAGE DOD/IDF-84/006b " - ,O

4. Title and Subtitle L. Uaort Date

COMPREHENSIVE OCCUPATIONAL DATA ANALYSIS PROGRAMS 80 (CODAP80) JANUARY 1984

Systems Manual .

7. Author(s) L Promin O ga mzation ISap. No.
N/A

9. Performing Organizatlon Name and Address I& Praject/Took/Wo Unit NO.
NAVY OCCUPATIONAL DEVELOPMENT AND ANALYSIS CENTER (NODAC)
BUILDING 150, WASHINGTON NAVY YARD (ANACOSTIA) r. rala) No.
WASHINGTON, DC 20374 (c) N/A

() N/A

Iz. Sponsorwne Oranization Name and Address 1I. Ty"S of 111at & Fe iod Coved

NAVY OCCUPATIONAL DEVELOPMENT AND ANALYSIS CENTER (NODAC) FINAL RELEASE 83.1
BUILDING 150, WASHINGTON NAVY YARD (ANACOSTIA)
WASHINGTON, DC 20374 14.

IS. Supplementary Notas

SOURCE CODE FOR CODAP80 PROGRAMS.

for magnetic tape see
I& A tract (Limit: 200 words)

CODAP80 is an enhanced IBM version of the Comprehensive Occupational Data
Analysis Programs. The software system is used to process occupational information
and includes programs that range from data entry to statistical analysis. CODAP80
is based on a database management concept which allows the job analyst more versatility
in analysis than its predecessor. Included with the system are four manuals: the
CODAP80 User's Manual, Job Analysis Manual, Systems Manual, and Executive Summary.

17. Document Ansisa a. Oeserlptae

b. Idmntflers/Opan.ended Tarm

C. COSATI Fiet/Gou

18. Avetbit Statenev- a. @110t 4:11111 M" 110a"M 31. me, at powa
UNCLASSIFIED 35RELEASE UNLIMITED @10011 01111 (W 11011 E 1011

, UNCLASSIFIED-
(See AN I-M.1 1as ;ai_-a anm ears

Depa~no a Cmmafle
- -- e a ~ - - - - - - ---- - - - ---

FOREWORD

The Comprehensive Occupational Data Analysis Programs (CODAP), a soft-
ware package developed by the United States Air Force, is in use by all the
United States military services and numerous other agencies throughout the
world. Of the two predominant versions of CODAP, the IBM version has not
kept pace with the continuing development of the UNIVAC version.

In 1978 the Navy Occupational Development and Analysis Center, a
detachment of the Naval Military Personnel Command, and serving as Executive
Agent for Joint Task Analysis Support for the Department of Defense, initi-
ated a project to develop an enhanced IBM version of CODAP which would be
less machine dependent than the e.isting IBM version, easy for non-program-
mers to learn and use, and which would provide the capability to implement
new analysis approaches for analyzing occupational data. The funding for
this project was provided by the United States Navy, Marine Corps, and Coast
Guard.

As a result of this project, CODAPSO, an enhanced version of IBNI CODAP,
was developed by Texas A&M University. This manual is one of four CODA'PO
manuals which were developed to accompany the CODAPSO system. The four
manuals are the CODAPS0 Executive Summary, the Job Analysis Manual, the
User's Manual, and the Systems Manual.

I-

/I1~

-. - . .

TABLE OF CONTENTS

Page

INTRODUCTION 1

THE DATABASE CREATION ROUTINES 2

INPSTD 2
CODAP80 INPSTD SUBROUTINES. 5
OGROUP 3
CODAP80 OGROUP SUBROUTINES 6
REARNG4
CODAP80 REARNG SUBROUTINES

THE CODAP80 INTERPRETER 9

CODAP80 ERRORFIL 9
ERROR MESSAGES 10
CODAP80 INTERPRETER SUBROUTINES 9
INTERPRETER OVERVIEW 9
TOKEN RECOGNITION 15
THE SYMBOL TABLE AND ITS ACCESS ROUTINE17
CODAP80 INTERPRETER TOKENS AND THEIR NUMERIC

VALUES: SORTED ALPHABETICALLY 18
CODAPSO INTERPRETER TOKENS AND THEIR NUMERIC

VALUES: SORTED NUMERICALLY 19

APPENDIX A: FORTRAN FG PROC A-1

APPENDIX B: CODAPSO FILE LAYOUTS B-1

?3

: i-

CODAP80

INTRODUCTION

The CODAPSO occupational analysis computer system consists of two major
sets of software: the software that comprises database creation, and the
software that comprises the interpreter. The entire CODAP80 system is
written in FORTRAN according to the specifications outlined in the document
IBM System/360 and System/370. FORTRAN IV Language, order number
GC28-6515-10. -/

CODAP80 was developed using the IBM FORTRAN IV G1 compiler (Release
2.0) operating under MVS/JES3 on an Amdahl 470/VS computer, and on an IBM
370/148 computer operating under VM/SP. The system should compile correctly
on IBM's H compiler. Users of the VS FORTRAN compiler will find that

, CODAP80's interpreter subroutine SQUASH produces an underflow abend
condition.

ORGANIZATION OF THE
SYSTEMS MANUAL

The Systems Manual is organized into two major sections: database
creation and the interpreter. The characteristics and attributes of the two
system sections is discussed, with subroutines being identified and file
layouts displayed. All file layouts pertain to the data to be found in the
sample set of data introduced in the User's Manual. The operation of the
CODAPSO interpreter is outlined, as well as token recognition and the access
and retrieval of database information ./ File space calculation equations for
the different routines in the CODAP0t system can be found in the User's
Manual. JCL execution setups for the ODAP80 system may also be found in
the User's Manual.

CODAPSO RELEASE

The specifications outlined in the Systems Manual pertain to the 83.1
release of CODAPS0.

/

"I

THE DATABASE CREATION
ROUTINES

INTRODUCTION

The database creatioh routines consist of the programs [NPSTD, OGROUP
and REARNG. All three of these programs execute in under 512K bytes of
memory.

INPSTD

The INPSTD database creation routine is the primary input routine for
all the data of an occupational study. Files unique to the INPSTD routine
are,

CONTROL- FT03FOOl
INPFILE - FT02FOOl
DATA - FT04FOO1
VARCOM - FT10FOOl
SYMTAB1 - FT12FOOl
DECODE - FT17FOOl

CONTROL

Data set CONTROL is a card image sequential file containing remarks for
the history, task and secondary variables, as well as decode titles and for-
mat fields specifications. On CODAP80's host computer, it was blocked
FB/80/6160. The exact layout of the CONTROL file can be found in Appendix
B.

INPFILE

Data set INPFILE is a direct access file with 3600 byte records. Fol-
lowing execution of the INPSTD database creation routine, it contains the
incumbent history, task (relativized) and secondary data. Following the
incumbent data are two words containing the sum of the row time spent
responses from the incumbent and the number of nonzero responses to tasks.
The layout of INPFILE after SAMPLEDATA80 INPSTD execution may be found in
Appendix B.

DATA

Data set DATA Is a card image sequential file containing the raw incum-
bent responses to history, task and secondary indicies. The information in
this data set Is processed by INPSTD and written to data set INPFILE. On
CODAPSO's host computer, it was blocked FB/80/6160. The exact layout of the
DATA file can be found in Appendix B.

2 '

5

VARCOM

Data set VARCOM is a direct access file with 244 byte records. Follow-
ing execution of the INPSTD database creation routine, it contains the his-
tory, task and secondary remarks that were processed from the CONTROL file.
The first word of the VARCOM file contains the length in characters of the
remark, and words 2-61 contain the variable remark stored in packed format
(A4). The layout of VARCOM after SAMPLEDATA80 INPSTD execution can be
found in Appendix B.

SYTAB1

Data set SYMTAB1 is a direct access file with 48 byte records. It is
the inital symbol table and contains pointer values and data counts. it
serves primarily as input to the OGROUP and REARNG database creation rou-
tines. The layout for SYMTAB1 can be found in Appendix B.

DECODE

Data set DECODE is a direct access file with 120 byte records. It
contains the decode titles that were processed from CONTROL by INPSTD. The
file can be thought of as a pseudo-indexed sequential file. See Appendix B
for the layout of the DECODE file.

INPSTD
SUBROUTINES

A listing of the INPSTD subroutines may be found on page 5.

OGROUP

The OGROUP database creation routine is the main clustering routine in
the COAP80 system. Files unique to OGROUP are:

GRPFILE - FT15FOO1
GRPHSN - FT16FOOl

GRPFILE

.Following execution of the OGROUP database creation routine, the
GRPFILE contains all the resultant information from. the incumbent cluster-
ing. GRPFILE is a direct access file with records of 12960 bytes. Between
and within overlap values reside In GRPFILE, as well as the colapsing proc-
ess for the diagram. See Appendix B for the configuration of GRPFILE.

3

A.-,

: !

GRPHSN

Data set GRPHSN is a direct access file with records of 40 bytes. Each
word of a record corresponds to an incumbent, and contains, positionally,
the HSN location an incumbent should have. GRPHSN acts as input to the
REARNG database creation routine. See Appendix B for the layout of file
GRPHSN.

OGROUP
SUBROUTINES

A listing of the OGROUP database creation subroutines can be found on
page 6.

REARNG

The REARNG database creation routine transposes the incumbent data in
INPFILE so that, instead of a record holding all the variables for an incum-
bent, a record holds all the incumbents for a variable. If OGROUP was
executed, then the incumbents in a record are in HSN order. Files unique to
REARNG are:

DATABASE - FT01FOOl
SYMTAB2 - FT13FOOl

DATABASE

Data set DATABASE is a direct access file with records of 4000 bytes.
The layout of the DATABASE file is as follows:

History variables will be written first. They will be unpacked (i.e.,
each incumbent has a value) and will be number of incumbents (NINC) words
long.

Task variables will be written in the first word of the record that
follows immediately after the end of the history variables. Task variables
will be written in packed format (i.e., missing values are to be removed).
Secondary variables will start in the word that immediately follows the last
word of the last task variable. Sec-ondary variables will be written in
paced format.

The task variable membership vectors will begin in the first word of
the record that follows the last seqondary row. The task membership vectors
will contain real numbers ranging from 1 to 9. The secondary variable mem-
bership vectors will begin In the word that immediately follows the last
word of the last task membership vector

Following the task and secondary membership vectors are the tables,
that define the locations of the task or secondary row vectors and their
associated membership vectors. Each row has two entries in the table. The
first entry for a row consist of the number of the record (relative to the

4..

7

CODAPSO INPSTD SUBROUTINES
* ENTRY POINT IS MAIMi

ATODIG
CoMp~s
DASHCK
0! CC VT
DEC. I
ERRN
HVARZ

* INCOAT
MAIN i
NEXTID
PCTTIM
PR EPCMd
SVAR
SY MT AS
TVAR
VALDAT
VALDEC
VAL.D I
VAL:D2
VARCOM

5

-- y

CODAPSO OGROUP SUBROUTINES
ENTRY POINT IS MAIN2

MA IN2
.MASIGN
MBULDM
MCALCW
MCALSP

IMOG AMMOO=O
MFILA.X
MFILST

MFMAX
, NOXP

MFXMAX
MGETW
MGRABSH
MrGRAFR
MGR AUS
UG A T
MORA8X
MGRSps

: GR PTTMGRUPS
MG7RAM
M%4SNFO
MIGE
MINITO
MIN.TK
MINPC
Mt(OUNT
MNIIG
MNUMF
MNUM:
MOG! I
MOPUT I
MOUTA
MCUTO
MCUTFO
MO V La
MO V L P
MPSLOK
MPICSG
MRDSK
MRDSKL
MS 140WA
MSMOWM
MVCNT
MWD 5K
MMD SKL
MWTHSN
SM LA RM

RfP duce fro

6

start of the task rows) that the row begins in times 1000, plus the number
of words to skip from the start of the record to reach the first word of the
row. The second entry in the table consists of the length of the row in
words.

The table for the task rows will begin in the first word of the next
record after the secondary membership vectors. The fable will be Ntask * 2
words long and will span (Ntask*2-1)/1000+1 physical records. The table for
the secondary rows will begin in the first word of the record that immedi-
ately follows .the end of the task table. The secondary table will be NSEC*2
words long and will span (NSEC*2-1)/1000+I physical records.

Following the tables the system rows Rawsum and Nonzero will appear.
Each of these rows will be NINC words long and will span (NINC-1)/1000+l
physical words. Each rows will start in the. first word of a physical
record.

The layout of file DATABASE following execution of the REARNG database
creation routine on the SAMPLEDATA80 data can be found in Appendix B.

REARNG
SUBROUTINES

A listing of the REARNG database creation subroutines can be found on
the following page.

7

7i

-. - -

CODAP80 EEARNG SUBROUTINES
ENTRY POINT IS MAIN 3

ULAN9P
CPVIN
GET WOG
CROPS
GTh
I NPUT
MAZN3
PRNPST
PTO
PUT OR
PUTPS
RD I SKO
SORT ZN
SYMCVT
TRNSPA
TRNSPS

THE CODAPSO INTERPRETER

The CODAP8O INTERPRETER is used to process and display information
residing on a CODAP80 database. The amount of memory required to execute
the interpreter is 820K bytes (non-overlayed).

CODAP80 ERRORFIL

The first step in installing the interpreter is to generate the error
file. On the following pages are the CODAP80 error messages and a FORTRAN
program (ERRORCVT) that will take the error messages and generate the error-
fil.

CODAP80 INTERPRETER
SUBROUTINES

On page 13 can be found a listing of the CODAP80 interpreter
subroutines.

INTERPRETER
OVERVIEW

The function of the interpreter is to input CODAPSO source code state-
ments, ensure that they are syntactically correct, and then perform the
operations indicated by the statements. The first phase of the interpreter,
the syntax analyzer and symbol table builder (SYNSYM), involves analyzing
the syntax of the statements to ensure that they are correct, and translat-
ing the source code into an intermediate form more suitable for computer
processing. The inputs to the interpreter used by this phase are the
CODAP80 source code, and the permanent symbol table (PST, which tells where
all permanently stored information is located; the outputs of this phase are
an echo print of the source code and any appropriate error messages, inter-
mediate printing for use by maintenance programmers, an intermediate form of
the source code which is a stack with a numeric representation of the source
code and tables for symbols, strings, and constants. The second phase
(EXECUT) carries out the operations on the data specified by the CODAP8O
commands. Its inputs are the stack with the numeric representation of the
source code, the three tables, the PST, the permanent data files, scratch
files, and data (if any) for the INPUT command. Its output are additions to
the PST and permanent data files and printed reports.

Additional inpus to SYNSYM that come from the main. routine are an
array to build the stack of numeric tokens, storage space to build the work-
ing symbol, string, and constant tables in, and two variables SUCCES, and
PRTLVL (print level). The storage space for tables is used to produce the
Working Symbol Table (WST), the string table, and the constant table. The
WST is used to keep track of all variables used within a given run. If the
variable exists on the PST it is copied into the WST, if it is not on the
PST a new entry for it is made in the WST. In this way all variables that
are accessed within a run can be located via the core resident WST. The

9

ERROR MESSAGES
CODAPSO INTERPRETER ERROR MESSAGES

001 UNRECOGNIZABLE CHARACTER.
002 STRING 9XCEEDS 240 CHARACTERS.
003 UNRECOGNIZABLE TOKEN.
004 INVALID RELATIONAL OPERATOR.
005 INVALID BOOLEAN OPERATOR.
006 INVALID SYSTEM VARIABLE.
007 TOO MANY SYMBOLS USED.
COB NUMBER OF TOKENS 1N SOURCE CODE EXCEEDS STACK SIZE.
009 INTEGER PORTION OF SYSTEM VARIABLE TOO LARGE.
010 RESERVED FOR
011 MORE MESSAGES
012 PROM GTOKEN
013 EXPECTING A COLUMN.
014 ID NOT PREVIOUSLY DEFINED.
015 EXPECTING A "ROWS" OR "COLUMNS" KEYWORD.
016 EXPECTING A "FOR" KEYWORD.
017 A RESERVED WORD HAS BEEN USED FOR A VARIABLE NAME.
018 EXPECTING ASSIGNMENT OPERATOR.
019 AN INVALID FUNCTION HAS BEEN SPECIFIED.
020 REMARK NOT FOUND.
021 LEFT PAREN MISSING.
022 UNBALANCED PARENTHESES.
023 INVAL:C VARIABLE NAME.
024 AN 1LLEGAL RANGE STATEMENT HAS BEEN SPECIFIED.
025 A GROUP NAME HAS NOT BEEN SPECIFIEC.
026 A MODULE NAME HAS NCT SEEN SPECIFIEC.
027 EXPECTING AN "ON" KEYWORC.
028 EXPE:TING UNDEFINED ID.
029 EXPECTING A ROW.
030 EXPECTING AN "IN" KEYWORD.
031 EXPRESSION NOT ENCLOSED IN PARENTHESES.
032 INVALID SYNTAX.
033 VARIABLES OUT OF SEQUENCE.
034 "SEGIN" NOT FIRST STATEMENT.
035 SYSTEM VARIABLE NOT VALID HERE.
036 EXPECTING 'USING" KEYWORD.
037 A SINGLE VALUEZ VARIABLE OR CONSTANT IS EXPECTED.
038 RELATIONAL OPERATOR NOT VALID HERE.
039 EXPECTING A SYSTEM COLUMN.
040 EXPECTING HISTORY VARIABLE IN SEQUENCE.
041 EXPECTING TASK VARIABLE IN SEQUENCE.
042 EXPECTING SECONDARY VARIABLE IN SEQUENCE.
043 EXPECTING "FORMAT" KEYWORD.
044 EXPECTING FORMAT STATEMENT.
045 THRU NOT VALID HERE.
046 EXPECTING SYSTEM ROW.
047 EXPECTING "THEN".
048 MULTIPLE CREATES NOT ALLOWED IN "IF".
049 EXPECTING "ELSE".
050 EXPECTING A PERIOD.
051 EXPECTING A COMMAND KEYWORD.
052 EXPECTING RELATIONAL OPERATOR.
053 "+" ONLY OPERATION ALLOWED HERE.
054 NOT A VALID KEYWORD FOR THIS COMMAND.
055 STUDY ID DOES NOT AGREE WITH DATA BEING ACCESSED.
056 A COLUMN DESIGNATION NOT VALID HERE.
057 A GROUP DESIGNATION NOT VALID HERE.
058 UNRECOGNIZED ID.
059 EXPECTING SINGLE VALUE VARIABLE.
060 EXPECTING SYSTEM COLUMN IN SEQUENCE.
061 EXPECTING SYSTEM GROUP IN SEQUENCE.
062 EXPECTING SYSTEM COLUMN OR SYSTEM GROUP.
063 INVALID SYNTAX 9OR A MODULE LIST.
064 EXPECTING RIGHT PAREN.
065 EXPECTING "HEADING" KEYWORD.

10

ERROR MESSAGES
CODAP80 INTERPRETER ERROR MESSAGES

(continued)

06 HEADING STRING CANNOT EXCEED 131 CHARACTERS.
067 THIS FUNCTIbN'HAS BEEN SPECIFIED MORE THAN ONCE.
068 EXPECTING FUNCTION SPECIFICATION.
069 BOTH THE VERTICAL AND HORIZONTAL AXES CONSIST OF THE- SAME DATA TYPE.
070 EXPECTING "BY" KEYWORD.
071 EXPECTING CHARACTER STRING.
072 NO MORE THAN 10 TITLE LINES MAY BE RE0UESTED.
073 EXPECTING "COLUMNS" OR "COLS" KEYWORD.
074 EXPECTING "ROWS" KEYWORD.
075 EXPECTING KEYWORD TO SPECIFY OVERLAPPING ALGORITHM.
076 EXPECTING "MAXIMIZE" SPECIFICATION.
077 EXPECTING "HSN" KEYWORD.
078 EXPECTING "LOHSN" KEYWORD.
079 EXPECTING "HIHSN" KEYWORD.
080 EXPECTING HEAOING STRING OR PERIOD.
08! EXPECTING HEADING STRING.
082 EXPECTING "SIMCOF" KEYWORD.
083 EXPECTING "WITHIN" KEYWORD.
08A EXPECTING NEW ID.
099 CHECK SYNTAX FOR A CORRECT KEYWORD (EITHER -ROWS" OR "CDUMNS"-
152 NC MEAN OR STANDARD DEVIATION FCUND.
153 ASSIGNMENT OPERATOR IS MISSING.
154 EXPECTING A CONSTANT.
155 REPEATED "MEAN".
56 REPEA"EO "STO'.

157 "STO" IS MISSING.
158 "MEAN" IS MISSING.
159 AN ASSIGNED VALUE OF STO MUST NO

T
BE LESS THAN ZERO.

160 TOKEN !S NOT A CREATED/SYS7EM ROW/COLUMN/MODULE/GROUP.
161 MUST BE TVARS/HVARS/SVARS/TASKS ONLV.
162 LENGTH OF CREATED ROW/COLUMN/MOOULE/3ROUP MUST BE GREATER THAN ZESC.
163 NTASK - 0. CAN'T GENERATE ROWS.
164 NHIST - 0. CAN'T GENERATE ROWS.
165 NSEC - 0. CAN'T GENERATE ROWS.
i 6 NINCS - 0. CAN'T GENERATE ROWS.
170 "TAPE" OR "CARD" KEYWORD IS MISSING IN COPY COMMAND,
171 "","BINARY. "D"."DISTANCE","02"."DSOUARE". DVL" ,R "OVERLAP" ONLY
172 "MINMEM" OR "HEADING" IS EXPECT HERE.
173 "RESET" MUST BE PRECEEDED BY "NOSKIP'.
174 "CUM" OR "COUNT" MUST BE PRECEEDED BY "NOSKIP"&"RESET" RESPECTIVELv
175 MINMEM MUST BE EOUAL OR GREATER THAN 2.
i8C EXPECTING "N" IN ADOATA COMMAND.
181 EXPECTING "No" OR "N:

=
" BEFORE A CONSTANT.

182 REPEAT FACTOR MISSING IN ADOATA COMMAND.
183 EXPECTING "a" OR ":a"

184 A CONSTANT IS MISSING IN ADDATA COMMAND.
185 "(" MISSING.

186 UNRECOGNIZED TOKEN IN ADDATA COMMAND.
18T A CONSTANT MISSING FOLLOWING A DASH (-).
188 ") MISSING FOLLOWING A CONSTANT LIST.
189 THE VALUE OF N AND NUMBER OF CREATED IDS ARE NOT THE SAME.
190 NUMBER OF NUMERIC FIELDS IN FORMAT MUST BE 1000 OR LESS.

t1

J -t

ERRORCVT
PROGRAM TO GENERATE THE INTERPRETER ERROR FILE

// EXEC FG.REGICN%256K
//FTCIFOOI 00 OSNpER2OR5.D:SPwCLO
//FTO2FOOl 00 DSsEQRORF:L.LJNIT.SYSDA.DISP=(NEW.CATLG),

1/ OCS"(OSORG.DA).SPACE.(320.(150.J))
//SOURCE 00*

------------------------------------ C
CERROR FILE DQOGRA-M (ERRORCVT). C

C PROGRAM TO GENERATE THE ERROR FILE FOR THE C
C CODAPSO INTERPRETER. TH4E ERRORS (IN CARD IMAGE C
C FORM) ARE READ FROM FILE I AND WRITTEN TO C
C FILE 2 (DSORG-CA). C
C--- C

DEFINE F1E. 2 (1!O,80.U.IREC)
INTEGER ZE7RUSO)
OA'A J/ I.

1 J.U. I

00 2 Isi.SO
2 IERR(I;0O

00 3 1-1.S0
READ(1.10'.END.100) IERRilZ)

101 FORMA!(I3.!X.76AI)
3 CONT!NUF

IREC.-.
WRITE(2':.REC) IERR
GO TO 1

4C (IE.I GO TO 200
IREC-.)
WR!'E(2'IRECI IERR

200 NUMERR-(,0-2)80-i

IRECST.--

WRITE(2'1) NUwMERt.:REC:ST
IREC-IRECST
REWIND

201 REAO(I.01I.ENO=300) (ER:.=.7
WRITE(2' IREC) t!RR(11.1.1.77)
GO TO 201

300 READ(2'1) NUMERR..RECST
WRITE(6,601) NUMERR.IRECST
K-IRECST- 1

IREC-1
REAO(2'1.REC) :ERQ
wRITE(6,60i) :ERR

601 cORMAT(X.ulX,30I41)
401 CONTINUE

ZTREC-iiUMERReIRECST- I
00 402 I.IRECST.ITR!C

IREC-I
REAO(2':RSC) tjERR(K) .K*1.77)
wRITF(6,iC2) (ZiRR(K).K-.77)

602 FORMAT(lX, I. IX.76A1I)
402 CONTINUE

STOP
END

//SYSIN 00

%proucedfrom
best avaiable copy. 12

CODAPSO INTERPRETER SUBROUTINES
ENTRY POINT IS KAIN4

ACCMOO CORRPM GROUP PCNTAV RELYCO SRELEX
AODATE CORRPR GROUPS PCNTC RELY! STDA
ADDATS CORRRM GRPCHK PPJNC RELYS STOAAV
ADOCON CORRRT GRPIT PFUNCA RELYSM STOAC
ADOID CORRS GRPLST PFUMCC RELYSS STO!
ADOREM CREATE G1'CHAR PFUNCR REPCRE STOEI
AOOSTR CREArs GTOKEN PICKSG REPOR! STVE3
ALLCOR CRELEX HASH POP REPORS STOP
ALPHA* CTSMAN HEADNG P0917 RETCCR STOPAV
ARITHE CTRIPS MSNFO POSTFX RETCNS STDPC
ASSIGN CUMLST ID PRALL RETOM STOS
AVALUE DATINT 10CR PRALLS RETLT1 STRING
AVALUS DECODE IbENT! PRFORM RETLT2 STRIPS
AVGA DELIM IDENTS PIHEAD RETMEM STRLEN
AVGAAV 015CR! ZGET PRHORZ RETPOS STIRET
AVGAC DESCRS INFMT PRINT! RETRC sum
AVGP DIAGRS INITO PRINTS RETSVV SUMAV
AVGPAV DIGIT INITK PRLOAD RETTIP SUMC
AVGPC DIGRAM INITLZ PRSORT RLIST SYNANL
BACKUP DOROW INPUT! PRSVV ROW SYNSYM
BEGIN! ECODE INPUTS PRTCT ROWCHK SYNTAX
BEGINS ENDE INRPRN PATMSG ROWNUM SYSVAR
BINSAC ERRPRT ZNUNPK PRTPST RPCPHD TCOUNT
BLDTRP EXECOM :TOA PRTRVE RPCRNR TRANSA
BLOWST EXECTR KEYWRO PRTST RPCRRM TRANSB
BOOLOP EXECUT i(OUNT PRTV12 RPSYCT rRIPLS
IUILOM FILLST MAIN4 PRTWST RPSYGP TRNSPS
CALCSP FILLWC MODCHK PRVTRK IPSYMO VARHD
CALCW FILLX MOOLST PSETUP RPSYRW VARSUE
CUDOL FINOXP MODULE PSTAOO RRELEX VARSUS
CLZST FIXMAX MOOLT PSTEND RTOA VARSU2
CLUST FMAX N PTOKEN RTOPND VECWRT
CLUSTE FPA NAV PUSH RTRWRC WOISK
CLUSTS FRMATR NC PUSHE3S RTSCOL WD!SXL
CNZ.WVC FROOST NDIGbT PUSHIT UTTRIP WRTRVE
CNSTNT FSERCH NEWID PUSHPT RTVTOK WRTV12
COLCHK FSORT NUMF PUSHRP SAVHSN WSETUP
COLEAR FULLAS NUm! 'USHIT SELECE WSTADD
COLNUM PUNC OGETI PUTO SELECS WSTREP
COLUMN GCOLST OPUTI RANOK SETSTx WSTR12
COMENT GETO OUTA RANOMK SHIFTR WSTSUB
C01NTOK GETRAW QUTO RANDOE SHOWA
COPY! GETW OUTFO RANDOS SHOW
COPYEI GMLEN OVLGET RANOu SIMLAR
COPYE2 GMRCCT OVLPUT RUDOL SINVAL
COPYIN GRABH PA RD15K SKIP
COPYS GRABl PAID ROISKL SNVAL2
CDP2PM GRABS PASORT RELATE SORTID
COMAE GRAST PSLOCK RELOP SORTLS
CORALT GRAIX PCNT RELYAC SQUASH

13

L/ j,

string and constant tables are used to collect strings and constants.
SUCCES is a variable that indicates if any errors are found. It is set to 1
when passed to SYNSYM. If an error is found it is set to 0. This means
that if SUCCES is 0 on return from SYNSYM an error was found; so EXECUT is
not called. PRTLVL is a variable that will allow a maintenance programmer
to get extra information printed out that should help in modifying the sys-
tem. If set to 2 only the source code and error messages are printed out.
PRTLVL will be set to 2 for normal execution. If PRTLVL is 1 the PST is
printed first, then the echo print of the source code and error messages,
followed by the WST, the string table, and the constant table. If PRTLVL is
0 all the previous information will be printed plus the numeric value of
each parameter will be printed as it is recognized.

SYNSYM first calls IDENTS to identify the next command and returns an
associated number. Based on this number SYNSYM calls one of the syntax
analysis routines. The routine called will analyze the syntax of a particu-
lar command. If the number indicates the END command was found, SYNSYM
returns to the main routine. Each of the syntax analysis routines calls a
subroutine, which gets the next parameter of the source code and returns its
numeric representation, several times checking for invalid syntax or until a
period is found and then returns. When errors are found ERRPRT is called to
print the message and set SUCCES to 0. ERRPRT will print a dollar sign
under the last character of the parameter in error and the message on the
next line. Whenever possible syntax analysis is resumed after finding an
error, but, if not possible, parameters are skipped until a period is found,
then a return is made.

The basic unit that the syntax analysis routines work with is the
token. The parameters of commands are tokens. A token is the smallest
meaningful aggregate of characters. For example: CREATE ROW FOR G3
FRED:=A+3 'remark'. has 11 tokens. They are CREATE, ROW, FOR, G3, FRED,
:=, A, +, 3, 'remark', and .,. GTOKEN (Get Next Token) is the routine that
picks these out of the source code and assigns a numeric value. For ids,
constants, and strings some information is put into tables, the numeric code
points to the proper position in the tables. Tokens from 150000 to 159999
represent ids and point to positions in the WST. The ids are added using a
hashing scheme. Tokens from 20000 to 29999 point to the constant table.
Tokens from 10000 to 19999 point to the string table.

Rows, columns, groups, and modules will all be stored as records on the
same file.

The EXECUT phase is broken down very similarly to SYNSYM. IDENTE is
first called to identify a command. Based on the number IDENTE returns, one
of the execution routines is called. The execution routines do whatever
data manipulation is required then return. The execution routines do not
update the permanent files or PST.. Any information they generate is stored
on scratch files. When the END command is reached the data and entries of
the WST that are to be added to the permanent information are copied over.
This means that if a power failure or some problem occurs in the middle of
EXECUT, the CODAP80 program can be rerun with no problem, since the perma-
nent information has not been changed. If something happens after the END
command is found, while the scratch files are being copied over, a separate

14

17

program that does just the copying over can be run, since the scratch files
should remain intact for a while. This means there is never any reason to
have to restore the database to a previous state so that a rerun can be
made.

TOKEN
RECOGNITION

The tokens of the language are recognized by GTOKEN (Get Next Token).
OTOKEN recognizes tokens without regard to cont6ext. Because the language
requires a blank, comma, or delimiter between tokens, there is never a case
where GTOKEN has to be aware of what the previous or succeeding token is, in
order to recognize a token. It is never necessary to scan more than one
character ahead of a token in order to recognize that token. Because the
cards with the source code on them are syntax analyzed as they are read in,
it is not possible to back up from the beginning of a card to the end of the
previous card. This means that strings, comments, and constants are the
only tokens that may cross card boundaries, since they can be identified
from the first character.

The inputs to GTOKEN are the source code, the variables PRTLVL, SUCCES.
ACTUAL, and LENGTH, the PST, and storage space for the WST, string table,
constant table, and stack of numeric tokens. TOKEN is used to return the
numeric code for the token. ACTUAL is used to return the source code token
when the token is an id. LENGTH is used to return the number of characters
in the id. The outputs are an echo print of the source code and any error
messages about invalid tokens, a printout of the numeric token if called for
by PRTLVL, another string, constant, or id in the appropriate table, the
numeric token in the stack, TOKEN, SUCCES, LENGTH, and ACTUAL.

GTOKEN is broken down into several subroutines. The first series of
routines called, attempt to recognize a token from the source code. The
parameter FOUND is passed to each of these routines initialized to 0. On
return from each routine FOUND is checked for 0 or 1. If it is 0 the next
routine is called. If it is 1 this means the routine recognized a token, so
OTOKEN returns to its calling routine. If the recognition routine does not
recognize a taken, it calls a routine called BACKUP so that the next recog-
nition routine will begin its scan of the source code at the same position
that the previous routine did.

The first routine called to attempt to recognize a token is STRING.
STRING first skips past any blanks or commas. STRING looks for a string
which is anything enclosed in quotes. If a string is found the subroutine
ADDSTR is called to add the string to the string table. ADDSTR returns the
index of where the string was added into the table. STRING adds this index
to 10000 to gep1erate the numeric token. FOUND is set to 1 and a return is
made;

COMMENT is called next, which attempts to recognize a comment which is
anything enclosed in number signs (#l). If a comment is found, FOUND Is set
to I and a return made. OTOKEN does not return when a comment is found.
Because comments are intended only for the writer of the CODAP code they are
ignored by the interpreter. OTOKEN will start the series of calls to the

15

recognition routines again beginning with STRING after finding a comment.
No numeric token is generated for comments.

CNSTNT is called next to attempt to identify a constant which is a
string of digits that may include a decimal point. If a constant is found
it is converted into numeric form and ADDCON is called to add it to the con-
stant table. ADDCON returns to the index of where the constant was added
into the table. CNSTNT adds this index to 20000 to generate the numeric
token. FOUND is set to 1 and a return made.

RELOP is called next which attempts to recognize a relational operator.
Relational operators are things such as .EQ., .NE., .LT., and =. If a rela-
tional operator s recognized it is assigned a numeric token of 30000 plus.
The exact numeric token assignments can be seen in appendix.

BOOLOP is called to recognize boolean operators. Boolean operators are
.AND., h, .OR., and I . If a boolean operator is recognized it is assigned a
numeric token of 40000 plus as indicated in appendix.

DELIM attempts to rec..gnize the next token as a delimiter. Delimiters
are: .,+_,/,,.,:=,(,), and ;. If a delimiter is found it is assigned a
numeric token of 50000 plus.

FUNC attempts to recognize functions. The functions are; LOG, SQRT,
ACUM, DCUM and so forth. If a function is found it is assigned a numeric
token of 60000 plus.

SYSVAR attempts to recognize system variables which are: the system
groups produced by the clustering program such as G1 and G5, history vari-
ables that are input by INPSTD such as HI and H4, task variables such as TI
and T4, secondary variables such as S1 and S3, incumbents such as 11 and 12,
and computed variables such as RAWSUM and SIMCOF. If one of these is recog-
nized it is assigned a numeric value of 70000 plus for computed variables,
80000 plus the integer portion of the history variable for history vari-
ables, 90000 plus the integer portion of the task variable for task vari-
ables, 100000 plus the integer portion of the secondary variable for second-
ary variables, 110000 plus the integer portion of the group variable for
group variables, and 160000 plus the integer portion of the incumbent for
incumbents. Groups can take on the range 110000-139999 and incumbents are
anything 160000 or greater.

KEYWRD is called next to look for a key word. Key words are words that
have special meaning to the CODAP language such as CREATE. AVALUE, IF, and
THEN.

ID. is called to check for an id. Since this is the last routine called
the next token has to be an id unless it is a character that is not meaning-
ful to CODAP80. If an id is found BLDWST is called to add the id to the
WST. BLDWST is further explained in the next chapter. BLDWST returns the
index of where the id was added into the table. ID adds this index to
150000 to generate the numeric token.

If none of these routines can recognize the token it means an invalid
character was entered in the source code. GTOKEN will then skip that

16

character after printing an error message and begin the calls to the
recognition routines again.

THE SYMBOL TABLE
AND ITS.-ACCESS ROUTINES

The two symbol tables used in the interpreter are used to keep track of
where all information is located. The PST keeps track of all information on
the permanent files and is kept on a disk file. The WST keeps track of
where any information needed within a single CODAPSO program is located.
The WST may point to information on the permanent files or to information on
the scratch files. The WST is created in a table in core.

The PST is initially created by INPSTD and contains 11 entries each
with 12 elements.

The headings on each of the 12 elements do not really apply to the
first 11 entries, only to the 12th and following entries, which keep track
of data that is added to the files through the use of the CODAPSO language.

Element 4 of entries 1-5 is used to keep track of where the next free
labels and records are located. Entries 1-3 give information about the his-
tory, task and secondary records established by INPSTD. For each of the 3
entries, element 6 tells the number of variables in the database, element 10
gives the record number of the first record of that type variable, and ele-
ment 11 gives the record number of where the first remark is stored. Each
variable in the system has a 240 character string called a remark associated
with it. Entry 4 gives information about the groups produced by the clus-
tering program; element 6 gives the number of groups produced and element 10
gives the record number of where the first of the two vectors, LOWHSN and
HIGHHSN, is stored. The fifth entry has the number of incumbents for the
study, in element 6, the sixth entry gives in elements 1-3 the Hollerith
value in 3A4 format of the study id associated with a database. The seventh
through ninth entries give the record number of each of the three computed
variables.

For the 12th and following entries of the PST is where information
added to the files is kept track of. Elements 1-3 hold the source code id
in 3A4 format. A routine called SQUASH is called to convert 4 Al words to
one A4 word to get the id into 3A4 format. This is the only routine in the
system that is machine dependent; it assumes a 32 bit word. The fourth ele-
ment holds a link in the chain or linked list and is used will be as unique
as possible for each different id. The hash code points to a position in an
array and the number in that array points to a proper entry in the symbol
table. To add an id to the table its hash code is generated; the code
points to an element of the array. This element is set to point to the next
free space in the symbol table. A pointer that keeps track of where the
next free space is incremented. To retrieve an id from the symbol table its
hash code Is generated. The code will be the same as was generated when the
id was added to the symbol table. The code then points to the position in
the array of pointers that points to the proper entry in the symbol table.

17

CODAPSO INTREPRETER TOKENS AND THEIR NUMERIC VALUES
SORTED ALPHABETICALLY

* 50001 DIAGRAM 144816 OVL 141609
30004 DISTANCE 145602 OVLGRP * 144008
30002 OSOUARE 144815 PCNT 142401
30006 02 140807 PERCENT 144812
50003 ELSE 142409 PRINT 143205

* 50005 END 141605 RANDOM 144019
5 50008 EXECUTE 144811 RAWSUM 75001
50009 FOR 141601 REL 141611
50004 FORMAT 144006 RELY 142414

* 50002 FROM 142407 REPLACE 144802
- 50006 GROUPS 144005 REPORT 144009
/ 50007 GVARS 143209 RESET 143220

30003 HEADING 144801 ROw 141608
30005 HIr-SN 74005 ROWS 142415
50010 HROWS 143215 SAVE 142412

* 30001 HSN 72001 SELECT 144011
ACUM 60007 HVARS 143202 SIMCOF 75002
ADDATA 144014 IF 140805 SORr 142410
ALL 141604 IN 140806 SORT 60009
AVALUE 144001 INCS 142413 SROWS 143216
AVE 141602 INCUMBENTS 147202 STO 141603
AVGA 142417 INPUT 143203 ST: 60006
AVGr t42416 L 140002 STOA 142419
a 140004 LIST 142420 STOP 142418
BEGIN 143211 LOG 6030: SUM 60003
3BNARY 144010 LOHSN 74004 SUM0NL" 144813
3 140804 MAX 60005 SVARS 143208
CCNST 143219 MAXIMIZE 145604 SYSCNST 144806
COLS 4321S MEAN 6001c SYSCCLS 14480C
CGRPS 143207 MIN 6000 SvSGROUPS 1464C4
CMOOS 143214 MINMEM 144015 SYSMOCS i44804
CCL 141610 M'SSING 144810 SYSROWS 144805
COLS 142402 MODS 142405 TAE 1424,i
COLUMN 1440!3 MCDULES 144803 TASKS '4320S
COLUMNS 144809 N .40001 TqEN 142408
CONSTANTS 146405 NHIST 740C2 TROwS 143212
COp 142403 NINCS 74001 "VARS 14320"
CORA 142404 NONZERO 76001 US'NG 43213
COUNT 143204 NOPAGE 144017 VANZSUM 144C.2
CREATE 144003 NOREM 143210 WITHIN I5C3
CROWS 143217 NOREMARKS 146401

CUM 60001 NOSAVE 144002
C 140003 NOSKIP 144016
OCUM 60008 NOSTIC 144018
CECODE 144007 NOSUMMARY 146401
DELETE 144004 NOT 141607
DES 141606 NSEC 73001
DESCEND 144808 NTASK 74003
DESCENDING 147201 ON 140801
DESCRIBE 145601 OVERLAP 444814

L1

CODAPS0 INTERPRETER TOKENS AND THEIR NUMERIC VALUES
SORTED NUMERICALLY

30001 END 14,605 GROUPS 144005
30002 DES 141606 FORMAT 44006
30003 NOT 141607 DECODE. 144007

< 30004 ROW 141608 CVLGRP 144008
>8 30005 OVL 141609 REPORT 1440r9
<. 30006 COL 141610 BINARY 144010

50001 REL 141611 SELEC
T

144011
50002 PONT 142401 VARSUM 144012
50003 COLS 142402 COLUMN 144013
50004 COPY 142403 ADDATA 144014
50005 CORR 142404 MINMEM 144015

- 50006 MODS 1424C5 NOSKIP 144016
50007 FROM 142407 NOPAGE 144C17

* 50008 THEN 142408 NOSTIO 144018
50009 ELSE 1424C9 RANDOM 144019
50010 SORT 14241C HEADING 144801

CUM 60001 TAPE 142411 REPLACE 144802
LOG 60002 SAVE 142412 MODULES 1448C3
SUM 60003 lNCS 142413 SYSMODS 1448C-1
MIN 60004 RELY 142414 SYSROWS 144S5
MAX 60005 ROWS 142415 SYSCNST 144806
STO 60006 AVGP 142416 SYSCOLS 144807
ACUM G0007 AVGA 142417 DESCEND .4480
OCUM 60008 STOP 142418 COLUMNS 1448C9
SORT 60009 STOA 142419 MISSING -4481C
MEAN 60010 LIST 142420 EXECUTE 144SI
HSN 72001 TVARS 14320' PERCENT 1448'2
NSEC 73001 VARS 1432C2 SUMONLv 144813
NINCS 74001 INPUT 143203 OVERLAP 144614
NHIST 74C02 COUNT 143204 DS;UARE 144815
NTASK 74003 DR:NT 143205 :IAGRAM 1448,6
LOHSN 74004 TASKS 143206 DESCRIBE 1456^
HIHSN 74005 CGRPS 143207 DISTANCE 1456:2
RAWSUM 75001 SVARS 143208 MAXIMIZE 1-560r
SIMCOF 75002 OVARS 143209 NOREMARKS 14640,

WITHIN 75003 NOREM 143210 NOSUMMAR
v

146403
NONZERO 76001 BEGIN 14321'. SYSGRCUPS 146404

Ny f40001 TROWS 143212 CONSTANTS 146405

L 140002 USING 143213 DESCENDING 147201

0 140003 CMOos 143214 INCUMBENTS 1472^2
a 140004 HROWS t43215

ON 140801 SROWS 143216

BY 140804 CROWS 143217
IF 140805 CCOLS 143218
IN 140806 CCNST 143219

02 140807 RESET 143220
FOR 141601 AVALUE 144001
AVE 141602 NOSAVE 144002
STD 141603 CREATE 144003
ALL 141604 DELETE 144004

19

..

Routines that ares used to access the symbol tables are WRTRVE (WST
retrieve), PRTRVE (PST retrieve), WRTV12 (WST retrieve length 12), WSTADD
(add to the WST), WSTREP (replace an entry of the WST), and WSTSUB (subtract
and entry of the WST). WRTRVE will return the first 11 elements of an entry
based on an index number passed to it. Since the numeric tokens for ids
contain the index number it is a, simple matter to compute the index number
from the token when the token's entry in the WST needs to be retrieved.
WRTV12 does the same thing that WRTRVE does except that it retrieves all 12
elements of each entry. WSTADD will add a new entry to the WST based on an
input index number. WSTREP will replace an entry of the WST based on an
input index number. RPTRVE will retrieve an entry of the PST given the
source code id in 3A4 format and its hash code. PRTRVE has to search
through the linked list to find an id if there is a collision, but WRTRVE
and WRTV12 do not have to because the index they get points directly to the
proper entry in the symbol table. This is one of the advantages of the
numeric tokens because they make it possible to get to resolve collisions in
hash values. The fifth element gives the type of data represented, a 1
means a row, a 2 a group, a 3 a module, and a 4 a column. The sixth element
contains the length of the vector. Elements 7-9 contain the module or group
that a column or row was created for, or is blank if the entry represents a
module or group. Element 10 gives the record number of the vector. Element
11 gives the record number of its associated remark. Element 12 is the
label number that points to the symbol table.

The WST is created during each run by first calling the subroutine
WSETUP (WST set up) to copy the first 11 entries from the PST to the WST.
As ids are encoutnered by GTOKEN they are added to the WST by calling the
subroutine BLDWST. BLDWST first checks to see if the id is already present
in the PST, if it is that entry from the PST is copied into the WST. If it
is not the id is added to the WST by filling in the id (elements 1-3), and
the chain (element 4), and the membership (elements 7-9). The syntax analy-
sis routine that called GTOKEN will set the type, membership, and remark
record number elements. The length, involves taking the Hollerith value of
the source code id and treating it as a number, then computing a hash code
that will be as unique as possible for each different id. This involves
taking the Hollerith value of the source code id information from the WST
without any search.

The access routines have been set up so that any time a module needs
information from a symbol table it does not deal directly with the symbol
table. This should prevent problems that might develop if a module made an
incorrect change to a symbol table; which would then affect other modules.

20

APPENDIX A

FORTRAN FG PROC
COMPILE, LINK EDIT AND GO PROCEDURE

FOR THE GI FORTRAN COMPILER

A-1

t jn jj

FORTRAN FG PROC
COMPILE, LINK EDIT AND GO PROCEDURE

FOR THE 01 FORTRAN COMPILER

//G EXEC PGM-lEYF0RTREGtOW192K
//SYSPRINT DD SYSOUTNA
/ISYSPUNC4 00 SYSOUT-B
//SYSLIN DO DSNAMEs&LOADSET,DISPE(MOD,PASS) ,UNIT-SYSSQ,

/1 SPACE-(80, (200, 700) RLSE) .OCBuBLKSIZE-80

//LKED EXEC PG3-IEWL.REGION.128KPARtMa(XREF,LET,LIST)
//SYSLIB D OSNAMESYSl.FRTL8,ISP-S4R
//SYSLMOD DO OSNAMEu&GOSET(MAIN) ,DISIN(NEW,PASS) .UNITuSYSOA.

// SPACE.(1024.(2O,10.t),RLSE),OCBBBLTSIZE71024
/ISYSPRINT DD SYSOUT-A
//SYSUTI DD DSNAME-4SYSUTI,UNITaSYS0ASPAC-(1024, (20,10 ,RLSE),

II DCB*BLKSIZE*1024
//SYSLIN 00 DSNAI4E-4LOAOSET,DISP=(OLD,DELETE)

//00 DDNMESYSIN

//GO EXEC PGM-*.LKEO.SYSLMOO
//FT05FOO1 0D DONAD4E-SYSIN
//FT06FOOJ DD SYSOUT-A
//FT07FOO1 DD SYSOUT=B

A-2

APPENDIX B

CODAPSO FILE LAYOUTS

B-1

CONTROL AND DATA FILE LAYOUTS

SAWLEOATAI0000700 1000400050005Y
HH .H.HTSTSTSTSTS
ff
HI 'SEX;
H2 =AGE;
H3 'YEARS ON JOB;
Ho4 =INCUIMENT I0;
TI -SUSOUE VIOLENT INMATES;
T2 -SHAKE DOWN INIATES;
T3 'SHAKE DOWN VISITORS;
T4 -ESCORT INMATES;
T5 'TESTIFY IN COURT;
Si -SECONOARY - SUBDUE VIOLENT INMATES;
52 'SECONOARY - SHAKE DOWN INMATES;
S3 =SECONDARY - SHAKE DOWN VISITORS;
S4 -SECONOARY - ESCORT IIATES;
S5 *SECONDARY - TESTIFY IN COURT;
of
HI I'NALE; 21Fel4ALE;
SI-S5 I'O0; 2-ASSIST; 3-SUPERVISE;
of

"219 117 111122014119212420 2221

I 1630 33430 0
127 344 41310 63
123 251 1122510
15330642710 0 0
2 1170 0 225231

B-2

IL
' A--

In 0 0 00 0 0 0

z 0

tj ~ ~ 8 ." CMd 8

-1 6d Cd* 0

UA

- - C4 t on 8 8

0 0co d

" 8 : 8 8

*0 0 0 ~~2

t 8o0- 0

v cm t

to. 0
.(

0

C M Vin 4001

L1V Cdin i

0 8 4mi v in 0 f

IB-3

VARCOM LAYOUT

RECORD CONTENTS
RECORD # WORD 61---

V

I I 3 SEX I I I - I I I I I I... I

2 1 31AGE I I 1.

3 I1- 21YEARISO;NI .OSI -- -I- - -I - -I- -- I- -I1...I- - I

4 I IINCUIMU!IT 101 1 1 1 1 1 1 ... I

5 22ISUSDIUE VIZOLEINT ZINNATIES I I I I...I

6 1 IBISMAbCIE OIWN IINMArIes I I I1 1--. 1

I 9S'AcE OIWN VI!SZTIORS I I I I ..

S 4IAESCOIRT INMATIES I II 1 .

9 IeI;GTESTIIF; JIN CIOU-RTl-- -- I-- --I I.. I I

10 i-34ISECOINDARIV - ISUEDIUE VIZOLEINT ZINMATIES-- ... I 1

11 1301SECOINDARIY - ISHAKIE DOIWN ZINMATIES I I ..I

12-; 1; ISCINAI - SAKIE DOIWN VjiSITIO S I I ..

13 26ISECOINO RI - ESCOiRT ZINMATIES I I I

14 1 23IStCD1NOARIY - ITESTIZFY)IN CIOURTI I I ... 1

B-4

0000000000

0000000000

- Ifl 00000000

000000000

0000000000

000000000,0

0

4 0000000000

~ mm- 0 mA 000

~ 000000000

---- ~oooo

I-

4
C
I"

B-5

-I

DECODE LAYOUT

RECORD m

RECORD FI.LD CONTENTS

V 1 2 3 4 5 6 .. 10

1 1.0 0.0 2.0 3.0 3.0 7,0 ... 0.0

2 80001 100001 0.0 0.0 0.0 0.0 ... 0.0
80001 100005 0.0 0.0 0.0 0.0 .. 0.0

3.0 5.0

3 H 80001 80001 1.0 MALE

4 H 80001 80001 2.0 FEMALE

5 S 100001 100005 1.0 00

q S 100001 100005 2.0 ASSIST

7 s 100001 100005 3.0 SUPERVISE

B-6
kt

888- oo 88888

.''888

; W* 6 ci 6
S888888 8 888

- - 0 00 £ - 0 00

88888 88888

" 4 N 6 6 0 '- 6 o 6=88888 e88888

o (0 6 6

. 888 88888

in In 6 0. 0

N88 888 888
S0 0 0

z-8888 o- 888

0 -- 0 0 0

o 8888 8. -. 8 8 8 8 8

w C4 o f- o l0 i 0

0 8 8 48.

08888 .88888
- - 6 00 - 00

~88888 .88888

0 4.4.0 0 0 0
S88888 .88888

i 6~~ t* - -- 6o6

88888 88888

80 O 8 8 m m 0 00
*88 8 88 co .88 8

4.88888 88888
8 88888 8 8 88 8

.8 88 88 p88 88 8

B-7

GRPHSK LAYOUT

RECORD #

RECORD FIELD CONTENT&

V 1 2 3 4 5 6 7 .. 10

1 5 7 2 4 6 3 .. 0

B-8

33

IuL~

